3.2.50 \(\int \frac {(d+e x^2)^4}{\sqrt {a+c x^4}} \, dx\) [150]

Optimal. Leaf size=388 \[ \frac {e^2 \left (42 c d^2-5 a e^2\right ) x \sqrt {a+c x^4}}{21 c^2}+\frac {4 d e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c}+\frac {4 d e \left (5 c d^2-3 a e^2\right ) x \sqrt {a+c x^4}}{5 c^{3/2} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {4 \sqrt [4]{a} d e \left (5 c d^2-3 a e^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {a+c x^4}}+\frac {\left (105 c^2 d^4+420 \sqrt {a} c^{3/2} d^3 e-210 a c d^2 e^2-252 a^{3/2} \sqrt {c} d e^3+25 a^2 e^4\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{210 \sqrt [4]{a} c^{9/4} \sqrt {a+c x^4}} \]

[Out]

1/21*e^2*(-5*a*e^2+42*c*d^2)*x*(c*x^4+a)^(1/2)/c^2+4/5*d*e^3*x^3*(c*x^4+a)^(1/2)/c+1/7*e^4*x^5*(c*x^4+a)^(1/2)
/c+4/5*d*e*(-3*a*e^2+5*c*d^2)*x*(c*x^4+a)^(1/2)/c^(3/2)/(a^(1/2)+x^2*c^(1/2))-4/5*a^(1/4)*d*e*(-3*a*e^2+5*c*d^
2)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*
x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(7/4)/(c*x^4+a)^(1/
2)+1/210*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^
(1/4)*x/a^(1/4))),1/2*2^(1/2))*(105*c^2*d^4-210*a*c*d^2*e^2+25*a^2*e^4+420*c^(3/2)*d^3*e*a^(1/2)-252*a^(3/2)*d
*e^3*c^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/a^(1/4)/c^(9/4)/(c*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.27, antiderivative size = 386, normalized size of antiderivative = 0.99, number of steps used = 6, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {1221, 1902, 1212, 226, 1210} \begin {gather*} \frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (5 \left (5 a^2 e^4-42 a c d^2 e^2+21 c^2 d^4\right )+84 \sqrt {a} \sqrt {c} d e \left (5 c d^2-3 a e^2\right )\right ) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{210 \sqrt [4]{a} c^{9/4} \sqrt {a+c x^4}}-\frac {4 \sqrt [4]{a} d e \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (5 c d^2-3 a e^2\right ) E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {a+c x^4}}+\frac {4 d e x \sqrt {a+c x^4} \left (5 c d^2-3 a e^2\right )}{5 c^{3/2} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {e^2 x \sqrt {a+c x^4} \left (42 c d^2-5 a e^2\right )}{21 c^2}+\frac {4 d e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)^4/Sqrt[a + c*x^4],x]

[Out]

(e^2*(42*c*d^2 - 5*a*e^2)*x*Sqrt[a + c*x^4])/(21*c^2) + (4*d*e^3*x^3*Sqrt[a + c*x^4])/(5*c) + (e^4*x^5*Sqrt[a
+ c*x^4])/(7*c) + (4*d*e*(5*c*d^2 - 3*a*e^2)*x*Sqrt[a + c*x^4])/(5*c^(3/2)*(Sqrt[a] + Sqrt[c]*x^2)) - (4*a^(1/
4)*d*e*(5*c*d^2 - 3*a*e^2)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*Arc
Tan[(c^(1/4)*x)/a^(1/4)], 1/2])/(5*c^(7/4)*Sqrt[a + c*x^4]) + ((84*Sqrt[a]*Sqrt[c]*d*e*(5*c*d^2 - 3*a*e^2) + 5
*(21*c^2*d^4 - 42*a*c*d^2*e^2 + 5*a^2*e^4))*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2
]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(210*a^(1/4)*c^(9/4)*Sqrt[a + c*x^4])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1212

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1221

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e^q*x^(2*q - 3)*((a + c*x^4)^(p +
 1)/(c*(4*p + 2*q + 1))), x] + Dist[1/(c*(4*p + 2*q + 1)), Int[(a + c*x^4)^p*ExpandToSum[c*(4*p + 2*q + 1)*(d
+ e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; FreeQ[{a, c, d, e, p},
 x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[q, 1]

Rule 1902

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, With[{Pqq = Coeff[Pq, x, q]}, D
ist[1/(b*(q + n*p + 1)), Int[ExpandToSum[b*(q + n*p + 1)*(Pq - Pqq*x^q) - a*Pqq*(q - n + 1)*x^(q - n), x]*(a +
 b*x^n)^p, x], x] + Simp[Pqq*x^(q - n + 1)*((a + b*x^n)^(p + 1)/(b*(q + n*p + 1))), x]] /; NeQ[q + n*p + 1, 0]
 && q - n >= 0 && (IntegerQ[2*p] || IntegerQ[p + (q + 1)/(2*n)])] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] && IG
tQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\left (d+e x^2\right )^4}{\sqrt {a+c x^4}} \, dx &=\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c}+\frac {\int \frac {7 c d^4+28 c d^3 e x^2+e^2 \left (42 c d^2-5 a e^2\right ) x^4+28 c d e^3 x^6}{\sqrt {a+c x^4}} \, dx}{7 c}\\ &=\frac {4 d e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c}+\frac {\int \frac {35 c^2 d^4+28 c d e \left (5 c d^2-3 a e^2\right ) x^2+5 c e^2 \left (42 c d^2-5 a e^2\right ) x^4}{\sqrt {a+c x^4}} \, dx}{35 c^2}\\ &=\frac {e^2 \left (42 c d^2-5 a e^2\right ) x \sqrt {a+c x^4}}{21 c^2}+\frac {4 d e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c}+\frac {\int \frac {5 c \left (21 c^2 d^4-42 a c d^2 e^2+5 a^2 e^4\right )+84 c^2 d e \left (5 c d^2-3 a e^2\right ) x^2}{\sqrt {a+c x^4}} \, dx}{105 c^3}\\ &=\frac {e^2 \left (42 c d^2-5 a e^2\right ) x \sqrt {a+c x^4}}{21 c^2}+\frac {4 d e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c}-\frac {\left (4 \sqrt {a} d e \left (5 c d^2-3 a e^2\right )\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+c x^4}} \, dx}{5 c^{3/2}}+\frac {\left (105 c^2 d^4+420 \sqrt {a} c^{3/2} d^3 e-210 a c d^2 e^2-252 a^{3/2} \sqrt {c} d e^3+25 a^2 e^4\right ) \int \frac {1}{\sqrt {a+c x^4}} \, dx}{105 c^2}\\ &=\frac {e^2 \left (42 c d^2-5 a e^2\right ) x \sqrt {a+c x^4}}{21 c^2}+\frac {4 d e^3 x^3 \sqrt {a+c x^4}}{5 c}+\frac {e^4 x^5 \sqrt {a+c x^4}}{7 c}+\frac {4 d e \left (5 c d^2-3 a e^2\right ) x \sqrt {a+c x^4}}{5 c^{3/2} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {4 \sqrt [4]{a} d e \left (5 c d^2-3 a e^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 c^{7/4} \sqrt {a+c x^4}}+\frac {\left (105 c^2 d^4+420 \sqrt {a} c^{3/2} d^3 e-210 a c d^2 e^2-252 a^{3/2} \sqrt {c} d e^3+25 a^2 e^4\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{210 \sqrt [4]{a} c^{9/4} \sqrt {a+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.14, size = 203, normalized size = 0.52 \begin {gather*} \frac {5 \left (21 c^2 d^4-42 a c d^2 e^2+5 a^2 e^4\right ) x \sqrt {1+\frac {c x^4}{a}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {c x^4}{a}\right )+e x \left (-25 a^2 e^3+2 a c e \left (105 d^2+42 d e x^2-5 e^2 x^4\right )+3 c^2 e x^4 \left (70 d^2+28 d e x^2+5 e^2 x^4\right )+28 c d \left (5 c d^2-3 a e^2\right ) x^2 \sqrt {1+\frac {c x^4}{a}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-\frac {c x^4}{a}\right )\right )}{105 c^2 \sqrt {a+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)^4/Sqrt[a + c*x^4],x]

[Out]

(5*(21*c^2*d^4 - 42*a*c*d^2*e^2 + 5*a^2*e^4)*x*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/
a)] + e*x*(-25*a^2*e^3 + 2*a*c*e*(105*d^2 + 42*d*e*x^2 - 5*e^2*x^4) + 3*c^2*e*x^4*(70*d^2 + 28*d*e*x^2 + 5*e^2
*x^4) + 28*c*d*(5*c*d^2 - 3*a*e^2)*x^2*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, -((c*x^4)/a)]))/(1
05*c^2*Sqrt[a + c*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.12, size = 506, normalized size = 1.30

method result size
elliptic \(\frac {e^{4} x^{5} \sqrt {c \,x^{4}+a}}{7 c}+\frac {4 d \,e^{3} x^{3} \sqrt {c \,x^{4}+a}}{5 c}+\frac {\left (6 d^{2} e^{2}-\frac {5 a \,e^{4}}{7 c}\right ) x \sqrt {c \,x^{4}+a}}{3 c}+\frac {\left (d^{4}-\frac {a \left (6 d^{2} e^{2}-\frac {5 a \,e^{4}}{7 c}\right )}{3 c}\right ) \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {i \left (4 d^{3} e -\frac {12 a d \,e^{3}}{5 c}\right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}\) \(286\)
risch \(-\frac {e^{2} x \left (-15 e^{2} x^{4} c -84 c d e \,x^{2}+25 a \,e^{2}-210 c \,d^{2}\right ) \sqrt {c \,x^{4}+a}}{105 c^{2}}+\frac {-\frac {i \left (252 a c d \,e^{3}-420 c^{2} d^{3} e \right ) \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}+\frac {25 a^{2} e^{4} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}-\frac {210 a c \,d^{2} e^{2} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {105 c^{2} d^{4} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}}{105 c^{2}}\) \(400\)
default \(e^{4} \left (\frac {x^{5} \sqrt {c \,x^{4}+a}}{7 c}-\frac {5 a x \sqrt {c \,x^{4}+a}}{21 c^{2}}+\frac {5 a^{2} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{21 c^{2} \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\right )+4 d \,e^{3} \left (\frac {x^{3} \sqrt {c \,x^{4}+a}}{5 c}-\frac {3 i a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{5 c^{\frac {3}{2}} \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\right )+6 d^{2} e^{2} \left (\frac {x \sqrt {c \,x^{4}+a}}{3 c}-\frac {a \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{3 c \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\right )+\frac {4 i d^{3} e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}+\frac {d^{4} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\) \(506\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^4/(c*x^4+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

e^4*(1/7/c*x^5*(c*x^4+a)^(1/2)-5/21*a/c^2*x*(c*x^4+a)^(1/2)+5/21*a^2/c^2/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2
)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I))
+4*d*e^3*(1/5/c*x^3*(c*x^4+a)^(1/2)-3/5*I*a^(3/2)/c^(3/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^
(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*(EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(I
/a^(1/2)*c^(1/2))^(1/2),I)))+6*d^2*e^2*(1/3*x*(c*x^4+a)^(1/2)/c-1/3*a/c/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)
*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I))+
4*I*d^3*e*a^(1/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c
*x^4+a)^(1/2)/c^(1/2)*(EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*c^(1/2))^(1/2),I))+d^4/
(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*Elli
pticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^4/(c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((x^2*e + d)^4/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^4/(c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 2.61, size = 214, normalized size = 0.55 \begin {gather*} \frac {d^{4} x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} + \frac {d^{3} e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{\sqrt {a} \Gamma \left (\frac {7}{4}\right )} + \frac {3 d^{2} e^{2} x^{5} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {5}{4} \\ \frac {9}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{2 \sqrt {a} \Gamma \left (\frac {9}{4}\right )} + \frac {d e^{3} x^{7} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{\sqrt {a} \Gamma \left (\frac {11}{4}\right )} + \frac {e^{4} x^{9} \Gamma \left (\frac {9}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {9}{4} \\ \frac {13}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {13}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**4/(c*x**4+a)**(1/2),x)

[Out]

d**4*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4)) + d**3*e*x**3*gam
ma(3/4)*hyper((1/2, 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(sqrt(a)*gamma(7/4)) + 3*d**2*e**2*x**5*gamma(5/4)
*hyper((1/2, 5/4), (9/4,), c*x**4*exp_polar(I*pi)/a)/(2*sqrt(a)*gamma(9/4)) + d*e**3*x**7*gamma(7/4)*hyper((1/
2, 7/4), (11/4,), c*x**4*exp_polar(I*pi)/a)/(sqrt(a)*gamma(11/4)) + e**4*x**9*gamma(9/4)*hyper((1/2, 9/4), (13
/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(13/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^4/(c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate((x^2*e + d)^4/sqrt(c*x^4 + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (e\,x^2+d\right )}^4}{\sqrt {c\,x^4+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)^4/(a + c*x^4)^(1/2),x)

[Out]

int((d + e*x^2)^4/(a + c*x^4)^(1/2), x)

________________________________________________________________________________________